
Implementation of a Modular
Framework to Compare Foraging

Algorithm Effectiveness
Kelsey Geiger

School of Computer Science
California State University Channel Islands

Email: kelseyrgeiger@gmail.com

Keywords—ARGoS, iAntz, ROS, Gazebo, 
rovers, forgaging algorithm, swarm robotics

I. Introduction

Swarm robotics is a relatively new and 
dynamic field, looking to learn how to control 
massive numbers of robots to complete tasks that 
cannot be solved by a single robot alone. Foraging
problems are problems in which a set of rovers 
searches for resources of some sort and returns 
them to a collection location. Many foraging 
algorithms are inspired by social insects, 
especially ants. Hecker and Moses have described 
a Central Place Foraging Algorithm (CPFA) based
on the foraging behavior of several ant species.[1] 
Another foraging algorithm developed by Fricke 
et al, called the Distributed Deterministic Spiral 
Algorithm (DDSA), is designed to cover the entire
search area and collect targets in optimal time.[2]

These two algorithms had previously been 
implemented in ARGoS and on iAntz robots.[1][2] 
Moses and Fricke wished to compare the 
performance of these two algorithms under similar
conditions. However, their implementations were 
too different to be able to isolate the algorithms 
themselves from changes to e.g. the driving, 
pickup, and dropoff routines for collecting 
resources. They also wanted to test the algorithms 
in a more realistic environment that better 
modeled the actual conditions rovers would 
operate under.

To these ends, the algorithms were written 
in a new framework, on the Robot Operating 
System (ROS) platform, simulated in Gazebo. The

Gazebo simulator offers a much more realistic 
simulation of the physics of rover motion, 
including more accurate physics calculations and 
more detailed interactions. The ROS platform can 
be used for both simulated and real robots, and so 
it allows for code to be written once, tested in 
simulation, and then run on physical robots. The 
new framework, which is based off of code used 
in the NASA Swarmathon competition, shall be 
described in this paper.

II. Background

Previously, the code written to implement 
the CPFA and the code written to implement the 
DDSA were separately developed, so similar 
functions were fulfilled with different code. These 
differences were not insignificant- they led to 
increased efficiency in one algorithm over the 
other only because there were fewer collisions on 
the return path, due to different motor controlling 
code for each algorithm, and not inherent 
properties of the algorithms themselves. Because 
of this, there was an incentve to develop a 
common framework for the common tasks carried 
out by these real and simulated robots, in order to 
compare the algorithms directly.

The NASA Swarmathon competition, 
overseen by the Biological Computation Lab of 
University of New Mexico (BCLab-UNM), also 
provided the incentive to create a basic framework
that would allow others to build their own 
algorithms off a set of basic utilities. The base 
version of this code, however, had its own 
algorithm, a simple random walk, and features of 



that algorithm persisted through many different 
components of the monolithic "mobility module". 
This design was useful for rapidly producing a 
basic set of code that could be modified in a 
competition setting, but it was not good for 
software development purposes- it was not 
modular or easy to modify key components of this
base code.

My primary task over the course of my 
DREU internship was to take this base code and 
convert it to a more modular and easily editable 
form, separating out key components and 
redefining the structure of the program to allow 
modification of only the algorithm used. 
Additionally, this code could be used for future 
NASA Swarmathon competitions. My secondary 
task during my DREU internship, once the 
primary had been completed, was to use this new 
framework to implement the DDSA and test it 
both in simulation and in physical rovers.

III. The New Design

The new modular framework designed 
over the course of the internship was inspired by 
interrupt handlers in operating systems. Different 
modules could interrupt the current action being 
done by the rover based on input. The modules 
each had a configurable priority, defined by a 
signed integer value, for their interrupts, based on 
the overall state of the rover's algorithm. In one 
state, some modules might be disabled, and in 
another they could take the highest priority. If 
multiple modules had interrupts that needed to be 
handled, then the highest-priority module would 
be attended to.

To make this framework compatible with 
C++, we defined a Controller interface, which 
each module implemented. We defined a 
PrioritizedController struct that was a pointer to a 
Controller and an integer priority value. These 
were stored in a standard priority queue, ordered 
by decrasing value (so that the highest priority 
value controller would be checekd first). There 
was a LogicController class used to manage the 
state of the overall program, including the 
management of the interrupt handling system. 
Every tenth of a second, all the Controllers besides

this LogicController were polled in order of their 
priority. If any of them had "work" to do, they 
were given control of the rover until they no 
longer needed to issue motor commands ("do 
work").

These controllers were separated into 
several disjoint functions, each independent of the 
others. They were the SearchController, which 
defined which point to move to if no other action 
had to be taken; the DriveController, which 
actually carried out the movement of the rover, 
either through a waypoint system or a direct motor
command; the PickUpController, which handled 
the picking up of cubes when they were sighted; 
the DropOffController, which handled returning to
the collection zone once a cube had been picked 
up; and finally the ObstacleController, which 
handled collision avoidance and avoidance of 
cubes if one was already held.

A. SearchController

SearchController was the lowest priority 
Controller in the collection, and was 
effectively only allowed to issue motor 
commands if the previous end goal point 
was reached and no cubes were found 
along te way, or if a cube was found and 
dropped off and a new search point was 
needed. This controller effectively 
managed the search pattern for the rover, 
and as such was most key to testing 
different search algorithms.

B. DriveController

DriveController was not directly used in 
the priority queue system. It handled the 
actual translation of commands from other 
controllers into proper motor signals, 
managing PID controllers for the wheels 
and gripper and sending the appropriate 
messages out to a translation module (in 
this case, with ROS, but it could be used 
with other frameworks as well). It took a 
set of waypoints, or direct velocity values 
for either the wheels or gripper from the 
other controllers, and would translate them



into values to send to the motors and 
servos as appropriate.

C. PickUpController

PickUpController handled the tracking and
picking up of cubes on the field. It took 
camera and ultrasound sensor input to 
locate blocks, drive to them, pick them up 
with grippers, and determine if the block 
was successfully held.

D. DropOffController

DropOffController handled the return to 
the collection zone and the process of 
dropping off the held cube. It took camera 
input to find the tags lining the collection 
zone. Once the collection zone was found, 
DropOffController aligned the rover 
towards the center, drove past the tags, and
opened the gripper to release the cube, then
backed up the rover. This would put it just 
outside the collection zone so that the state 
machine could cycle back to the first state.

E. ObstacleController

ObstacleController handled the avoidance 
of various types of obstacles, depending on
the current state of the program. During the
search portion, ObstacleController took 
camera input and ultrasound sensor input 
to avoid the collection zone tags and other 
rovers and walls, respectively. During the 
return and dropoff portions, 
ObstacleController took camera and 
ultrasound sensor input to avoid cube 
clusters and other rovers and walls, 
respectively.

This framework allowed for much greater 
flexibility, since different modules could be kept 
the same and only SearchController could be 
modified to truly compare different algorithms 
side-by-side.

IV. Preliminary Testing

While more thorough testing could not be 
completed by the end of the internship, some 
preliminary testing was done. Both the CPFA and 
DDSA were implemented with the new system, 
and both were tested for 15 trials of 6 rovers 
running for 20 simulated minutes per trial. The 
DDSA averaged 88.73 cubes over the 15 trials 
while the CPFA averaged 54.07 cubes over 15 
trials.

For the number of rovers used, this relative 
difference matches that found by Fricke et al.[2] 

However, given the limited number of trials done 
during this preliminary testing, these results are 
not conclusive, and future work must be done to 
achieve more accurate results. Additionally, the 
simulation should be able to scale to well over six 
rovers at a maximum, to arbitrary values of rovers,
to better determine the limits of each algorithm 
and better understand how each scales with swarm
size.

References

[1] Hecker, Joshua P., and Melanie E. Moses. 
"Beyond pheromones: evolving error-
tolerant, flexible, and scalable ant-inspired 
robot swarms." Swarm Intelligence 9.1 
(2015): 43-70. 

[2] Fricke, G. Matthew, et al. "A distributed 
deterministic spiral search algorithm for 
swarms." Intelligent Robots and Systems 
(IROS), 2016 IEEE/RSJ International 
Conference on. IEEE, 2016. 


